
Docs/FlexCat_english

Docs/FlexCat_english ii

COLLABORATORS

TITLE :

Docs/FlexCat_english

ACTION NAME DATE SIGNATURE

WRITTEN BY April 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Docs/FlexCat_english iii

Contents

1 Docs/FlexCat_english 1

1.1 Docs/FlexCat_english.guide . 1

1.2 FlexCat_english.guide/Disclaimer . 2

1.3 FlexCat_english.guide/Survey . 3

1.4 FlexCat_english.guide/Installation . 5

1.5 FlexCat_english.guide/Program start . 6

1.6 FlexCat_english.guide/Preferences . 9

1.7 FlexCat_english.guide/Catalog description . 10

1.8 FlexCat_english.guide/Catalog translation . 12

1.9 FlexCat_english.guide/Source description . 13

1.10 FlexCat_english.guide/Using FlexCat source . 16

1.11 FlexCat_english.guide/C . 17

1.12 FlexCat_english.guide/C++ . 19

1.13 FlexCat_english.guide/Oberon . 19

1.14 FlexCat_english.guide/Modula-2 . 20

1.15 FlexCat_english.guide/Assembler . 21

1.16 FlexCat_english.guide/E . 22

1.17 FlexCat_english.guide/Appendix . 23

1.18 FlexCat_english.guide/Future . 23

1.19 FlexCat_english.guide/Support . 24

1.20 FlexCat_english.guide/Credits . 24

1.21 FlexCat_english.guide/History . 26

1.22 FlexCat_english.guide/Index . 26

Docs/FlexCat_english 1 / 30

Chapter 1

Docs/FlexCat_english

1.1 Docs/FlexCat_english.guide

FlexCat V2.3 Documentation

This file describes the Usage of FlexCat V2.3, a program which generates
catalogs and the source to handle them. FlexCat works similar to CatComp
and KitCat, but differs in generating any source you want. This is done by
using the so called Source descriptions, which are a template for the code
to generate. They can be edited and hence adapted to any programming
language and individual needs. (Hopefully!)

General:

Disclaimer
Copyrights, (NO) warranty

Survey
What is FlexCat?

Installation
How can I get it working?

Using FlexCat:

Program start
Calling FlexCat from the CLI

Preferences
Changing FlexCat default behaviour

Catalog description
Catalog description files (.cd-files)

Catalog translation
Catalog translation files (.ct-files)

Docs/FlexCat_english 2 / 30

Source description
Source description (.sd-files)

Using FlexCat source
Using FlexCat source in own programs

Unnecessities:

Future
Further development of FlexCat

Support
Where to look for updates

History
History of development

Credits
What I always wanted to say...

Index
Where you find what you are never looking for

1.2 FlexCat_english.guide/Disclaimer

Copyright and other legal stuff

Copyright (C) 1993-1999 Jochen Wiedmann and Marcin Orlowski

Jochen Wiedmann
Am Eisteich 9
72555 Metzingen
Deutschland

Since v1.8 program is developed by

Marcin Orlowski
ul. Radomska 38
71-002 Szczecin
Poland

carlos@amiga.com.pl
http://amiga.com.pl/flexcat/

Permission is granted to make and distribute verbatim copies of this
manual and the program FlexCat.

The author gives absolutely no warranty that the program described in
this documentation and the results produced by it are correct. The author
cannot be held responsible for any damage resulting from the use of this

Docs/FlexCat_english 3 / 30

software.

1.3 FlexCat_english.guide/Survey

Survey

Since Workbench 2.1 the Amiga offers a rather pleasant system of using
programs in different languages: The locale.library. (This is called
localizing, that’s what the name’s for.)

The idea is simple: You select a language, the english in most cases and
write your program in the same manner as you did without localizing, except
that constant strings are replaced by certain function calls. Another
function call makes it possible that the user selects another language when
the program starts. (The latter function call loads an external file, the
so called catalog and makes the former to read the strings from the catalog
instead of using the predefined strings.)

These catalogs are independent from the program. All you need to do for
adding another language is to create a new catalog file and this is
possible at any time without changing the program.

But there are additional tasks for the programmer: He needs to create the
catalogs, the predefined strings and some source to handle them all. (The
functions that are mentioned above.) FlexCat is designed to make this in an
easy and nearly automatic manner without losing flexibility especially in
creating the source. An example should make this clear:

Lets assume that we want to write a HelloLocalWorld.c. Our final program
will look like this:

#include <stdio.h>
#include <stdlib.h>
#include <HelloLocalWorld_Cat.h> /* You must include this! */

void main(int argc, char *argv[])
{

printf("%s\n", msgHello);
}

Note that this is quite the same as the original HelloWorld.c except for
replacing the string "Hello, world!" with a constant msgHello.

These constants and the related strings are defined in a so called
Catalog description file. See

Catalog description
. You always start by

creating such a file called HelloLocalWorld.cd, which could look like this:
; Comments are allowed, of course! Each line beginning with a
; semicolon is assumed to be a comment
;
; The language of the builtin strings:
#language english
;

Docs/FlexCat_english 4 / 30

; The catalog version, used for a call to Locale/OpenCatalog().
; This is different to Exec/OpenLibrary(): 0 means any catalog
; version, other numbers must match exactly!
#version 0
;
; This defines a string and the ID which allows to use it.
; The number 4 says, that this string must not be shorter than
; 4 characters.
msgHello (/4/)
Hello, world!

By using FlexCat you create another two files from the catalog
description: The include file HelloLocalWorld_Cat.h defines the constants
and the HelloLocalWorld_Cat.c contains an array of strings and some
initializing functions. You don’t need to know what they do, just use
them. Especially you don’t need to know anything about the locale.library!

However, you might be interested, how these files look or even more, you
might want to modify them. This is the difference between FlexCat and other
catalog generators: With FlexCat you are not bound to a certain builtin
format these files have. Instead it uses external template files, so
called Source descriptions. This makes it possible, for example, to allow
using catalogs with AmigaDOS 2.0. See

Source description
. If you use the

source descriptions from the FlexCat distribution you can create the source
files with the following commands:

FlexCat HelloLocalWorld.cd HelloLocalWorld_Cat.c=C_c.sd
FlexCat HelloLocalWorld.cd HelloLocalWorld_Cat.h=C_h.sd

When your program is ready, you use FlexCat again to create so called
Catalog translation files, one for each language you would like to support.
(Except english, which is builtin.) See

Catalog translation
. Lets create a

german catalog translation:
FlexCat HelloLocalWorld.cd NEWCTFILE Deutsch.ct

This file would now look as follow:
version
language
codeset 0
; Comments ar eallowed, of course! Each line beginning with a
; semicolon is assumed to be a comment
;
; The language of the builtin strings:
;
; The catalog version, used for a call to Locale/OpenCatalog().
; This is different to Exec/OpenLibrary(): 0 means any catalog
; version, other numbers must match exactly!
;
; This defines a string and the ID which allows to use it.
; The number 4 says, that this string must not be shorter than
; 4 characters.
msgHello

;Hello, world!

Docs/FlexCat_english 5 / 30

You see, it looks much like the catalog descriptions. FlexCat includes the
comments from the catalog description, even where it is meaningless: Note
the comment on the string length which shouldn’t appear here as these
informations must be in the catalog description only. All you have to do
now is to fill in the informations on the version (a typical version string
like $VER: Deutsch.catalog 1.2 (06.03.98) is expected), the language of the
catalog translation (Deutsch for german here), the codeset (which should
always be 0 for now, see Locale/OpenCatalog() for details) and of course
the strings itself. FlexCat includes the original strings as comments, so
you always know what to fill in. Finally you create the catalogs with
commands like

FlexCat HelloLocalWorld.cd Deutsch.ct CATALOG Deutsch.catalog

Note, that you don’t need the program itself or the source files created
with FlexCat for the catalogs! You can create new catalogs at any time. It
is usual to supply distributions with a file FlexCat.ct, so users can
create own catalogs.

But what happens if you change the program later? Just edit the catalog
description and use FlexCat to update the catalog translations:

FlexCat HelloLocalWorld.cd Deutsch.ct NEWCTFILE Deutsch.ct

All you need to do now is to enter new strings if needed.

1.4 FlexCat_english.guide/Installation

Installation

FlexCat is written in pure Ansi-C (except for the localization), hence it
should run on any Amiga and hopefully on other machines after recompiling.
(The localizing is commented out in that case.) This holds for the created
programs too: FlexCat is written using itself. All distributed source
descriptions should create programs running on any Amiga and even any
machine. (Of course you must ensure that the variable LocaleBase has the
value NULL in the latter case.) Localizing, however, is possible beginning
with Workbench 2.1 because the locale.library isn’t available below.

It is not impossible to offer localizing without the locale.library: The
source description files C_c_V20.sd and C_h_V20.sd give an example, where
the iffparse.library is used to replace the locale.library, if it is not
available. This gives Localizing for Workbench 2.0. See

C
.

Installing FlexCat is simple: Just copy the program to a directory in
your search path and select a place for the source descriptions you need.
(These are the files called something like xx_yy.sd, where xx is the
programming language.) Probably you want to set the environment variable
FLEXCAT.PREFS or FLEXCAT_SDDIR. See

Program start
.

Docs/FlexCat_english 6 / 30

If you want to use FlexCat in another language than the english you need
to copy the respective catalog files too. E.g. for the german language
copy the file Catalogs/Deutsch/FlexCat.catalog to Locale:Catalogs/Deutsch/
or to PROGDIR:Catalogs/Deutsch/ , where PROGDIR: is FlexCat’s program
directory. See

Using FlexCat source
.

1.5 FlexCat_english.guide/Program start

Calling FlexCat from the CLI

FlexCat is a CLI based program and doesn’t operate from the workbench.
It’s calling syntax is

FlexCat CDFILE/A,CTFILE,CATALOG/K,NEWCTFILE/K,SOURCES/M,WARNCTGAPS/S,
NOOPTIM/S,FILL/S,FLUSH/S,NOBEEP/S,NOLANGTOLOWER/S,NOBUFFEREDIO/S,
MODIFIED/S,QUIET/S,COPYMSGNEW/S,OLDMSGNEW/K

Please note, that due to FlexCat portability, the argument parsing is not
quite standard. Most notably, the only keywords you can (and must) specify
are CATALOG and NEWCTFILE (those of type "/K"), others should be ommited,
or be badly taken as argument itself. This is going to change probably in
the next release.

Since v1.9, FlexCat implements simple preferences mechanism, which allows
you to change default behaviour of FlexCat. See

Preferences
.

And now, the arguments meaning:
CDFILE

is the name of a catalog description to be read. This is always needed.
Please note, that the base name of the source description is created
from it making this case significant. See

Source description
.

CTFILE
is the name of a catalog translation file to be read. This is needed
for creating catalogs or for updating an old catalog translation file
using the NEWCTFILE argument: FlexCat reads the old file and the
catalog description and creates a new catalog translation file
containing the old strings and possibly some empty lines for new
strings.

CATALOG
is the name of a catalog file to be created. This argument requires
giving CTFILE as well.

NEWCTFILE

Docs/FlexCat_english 7 / 30

is the name of a catalog translation file to create. FlexCat reads
strings from CTFILE, if this is given, strings missing in the catalog
translation are replaced by empty lines. (The new catalog translation
will contain only empty lines as strings, if CTFILE is omitted.)

SOURCES
are the names of source files to be created. These should be given in
the form source=template where source is the file to create and
template is the name of a source description file to be scanned.

If the source description isn’t found, FlexCat tries to open a file
with the same name in the directory PROGDIR:lib. (The subdirectory lib
of the directory where the binary FlexCat itself lives.) You can
overwrite this default with the environment variable FLEXCAT_SDDIR.
Example:

FlexCat FlexCat.cd FlexCat_Cat.c=Templates/C_c_V20.sd

would look for a file Templates/C_c_V20.sd in the current directory
first. If this wouldn’t be found and no variable FLEXCAT_SDDIR would
be present, FlexCat would look for PROGDIR:lib/Templates/C_c_V20.sd.
But if FLEXCAT_SDDIR would exist and have the value Work:Flexcat, for
example, then the existence of Work:FlexCat/Templates/C_c_V20.sd would
be checked.

WARNCTGAPS
usually FlexCat doesn’t warn about symbols missing in the catalog
translation. This option will switch on such warnings.

NOOPTIM
Normally, if both strings (source in #?.cd file and translation in
#?.ct one) are equall, FlexCat assumes there’s no need to write it to
the catalog file as it should be in program built-in string table
already, from which it will be taken. But if you want, for some
reasons these strings to be written (or in another words: if you want
all strings to be written) use NOOPTIM.

FILL
This feature is highly useful for the translators. Normally, while
working on the translation you got some strings still empty as you are
working on them. But it obvious you want to check currently
translated strings. Unfortunately all catalog creators including
FlexCat write all empty strings too, which cause empty buttons or
simmilar things to happen. Switch to forbid empty strings is not a
good solution because prevents you from having such if you need. Also
some bad written program may requre all strings to be in the catalog
(even empty) e.g. due to lack of built-in strings. Using FILL option
you force FlexCat to write source string (from #?.cd file) everytime
it catch translation to be empty or be not present at all. NOTE:
this is only for testing purposes. Final catalogs should always be
created with no FILL swich used!

FLUSH
This switch is useful when you are translate and test your translation
simultanously. As AmigaOS caches catalogs (as well as libraries,
fonts, devices etc) in memory, you need to flush it (e.g. using
C:AVAIL FLUSH command) every time you want new catalog to be reread
from the disk (instead of using cached copy). If you specify this

Docs/FlexCat_english 8 / 30

switch while creating the catalog, FlexCat will automatically flush
all unused things from the memory. NOTE: FLUSH works only when you
create new catalog. Otherwise it will be ignored. Example:

FlexCat Test.cd Test.ct CATALOG Test.catalog FLUSH

NOBEEP
Since version 1.9, FlexCat will do DisplayBeep() to notice you about
problems he encountered. Such behaviour is very useful when you call
FlexCat from environment without standard output (e.g. you launch the
script form the DOpus or other tool, etc). Of course you may don’t
like these beeps (however FlexCat is smart enough and beep only once,
even you receive 20 warrnings, so don’t be afraid of any
beep-bombing). In such case use NOBEEP switch to shut FlexCat up.

NOLANGTOLOWER
Normally, FlexCat makes #language entry argument (from #?.ct file)
lowercased using utility.library call. Utility library calls
locale.library if present, but I was reported that due to broken
conversion table in some locales (czech for instance), it leads to
incorrect strings. So this switch is the workaround for that problem.
I strongly suggest to force your locale author to fix that bug, as
some tools may also give you wrong results. And rememeber to keep
#language name lowercased manually, if you need to use that switch
(but don’t use it unless really necessary).

NOBUFFEREDIO
Buffered IO makes most applications often doing IO operations run
faster. So does FlexCat 2.0+. The speed up is mostly noticeable on
systems using pooling devices (like (E)IDE), but the gain will also be
reached on DMA bases systems (SCSI). FlexCat uses two 2KB buffers, so
if you really think that’s not the feature you like, that’s the way to
disable it.

MODIFIED
This option tells FlexCat to compile the catalog only then, when the
source #?.cd or #?.ct file were changed since last catalog creation.
When catalog file is older than its sources, FlexCat just quits. This
option is very useful when you want to create kind of shell scripts to
process and compile more catalogs at once (e.g. for OS localisation or
programs like DOpus5), and don’t want to waste your time for
recompilation of nonmodified catalogs.

FlexCat File.cd File.ct CATALOG File.catalog MODIFIED

QUIET
Tells FlexCat to keep mouth shut unless really necessary. It means
that you won’t see any warning messages. Errors will be reported.

FlexCat File.cd File.ct QUIET

COPYMSGNEW
While updating catalog translation file with new #?.cd file, FlexCat
usually marks newly added strings with ***NEW*** string (see the
Preferences related chapter to find out how to customize this string),
which is very useful and lets you easily catch all the new things that
had appeared since last release. Unfortunately, previous versions of
FlexCat (pre 2.2) didn’t copy those markers from old #?.ct to updated

Docs/FlexCat_english 9 / 30

one, which forced user to either update only completely translated
#?.ct files which didn’t recuire them any longer, or to keep them by
hand in any way. This was quite annoing, so v2.2 comes with the
solution for that problem - FlexCat is now aware of presence of such
markers and when this option is turned on, it simply copies them form
old #?.ct to updated one.

FlexCat New.cd Old.ct NEWCTFILE Updated.ct COPYMSGNEW

OLDNEWMSG
This option needs to be used together with COPYMSGNEW to take effect.
By default, COPYMSGNEW searches for ***NEW*** string and treats it as
new string marker. But if you were using something different than
default string, you need to specify it using OLDNEWMSG, otherwise
FlexCat won’t catch them:

FlexCat New.cd Old.ct NEWCTFILE Updated.ct COPYMSGNEW OLDMSGNEW=** ←↩
Neu**

For further examples of command lines see
Survey
.

1.6 FlexCat_english.guide/Preferences

Changing default behaviour of FlexCat

Since version 1.9 FlexCat implements simple preference mechanism. By
using environmental variable FLEXCAT.PREFS you can change program’s default
behaviour.

Variable FLEXCAT.PREFS is parsed using dos.library ReadArgs() call, thus
all switches should be typed in one line with space as switch separator.
The preferences template looks as follow:

SDDIR/K,NEW_MSG/K,WARNCTGAPS/S,NOOPTIM/S,FILL/S,FLUSH/S,NOBEEP/S,QUIET/S,
COPYMSGNEW/S,OLDMSGNEW/K

NEW_MSG
can be used to customize the text, FlexCat uses to mark new strings
apparing while updating the catalog translation file (using new
description file and old translation). The default string is ***NEW***.

For detailed information about other tags, please read the

Program start
chapter.

Note concerning SDDIR: while creating source file FlexCat firstly check
the current dir, then directory set in preferences. If it still fails,
it read FLEXCAT_SDDIR variable and finally the "PROGDIR:lib/" drawer.
So using both preferences variable and FLEXCAT_SDDIR you can use two

Docs/FlexCat_english 10 / 30

custom descriptors’ drawers simultaneously.

1.7 FlexCat_english.guide/Catalog description

Catalog description files

A catalog description file contains four kinds of lines.

Comment lines
Any line beginning with a semicolon is assumed to be a comment line,
hence ignored. (The string lines below are an exception. These may
begin with a semicolon.)

Command lines
Any line beginning with a ’#’ (with the same exception as above) are
assumed to be command lines. Possible commands are:
#language <str>

gives the programs default language, the language of the strings
in the catalog description. Default is #language english.

#version <num>
gives the version number of catalogs to be opened. Note that this
number must match exact and not be same or higher as in
‘Exec/OpenLibrary’. An exception is the number 0, which accepts
any catalog. Default is #version 0. See Locale/OpenCatalog for
further information on catalog language and version.

#lengthbytes <num>
Instructs FlexCat to put the given number of bytes before a
string containing its length. The length is the number of bytes
in the string without length bytes and a trailing NUL byte.
(Catalog files and hence catalog strings will have a trailing NUL
byte. This is not always true for the default strings, depending
on the source description file.) <num> must be between 0 and
sizeof(long)=4, Default is #lengthbytes 0.

#basename <str>
Sets the basename of the source description. See

Source description
. This overwrites the basename from the

command line argument CDFILE. See
Program start
. Commands are

case insensitive.

Description lines
declare a string. They look like IDSTR (id/minlen/maxlen) where IDSTR
is a identifier (a string consisting of the characters a-z,A-Z and
0-9), id is a unique number (from now on called ID), minlen and maxlen
are the strings minimum and maximum length, respectively. The latter
three may be missing (but not the characters (//)!) in which case

Docs/FlexCat_english 11 / 30

FlexCat chooses a number and makes no restrictions on the string
length. Better don’t use the ID’s, if you don’t need. The lines
following are the

String lines
containing the string itself and nothing else. These may contain
certain control characters beginning with a backslash:
\b

Backspace (Ascii 8)

\c
Control Sequence Introducer (Ascii 155)

\e
Escape (Ascii 27)

\f
Form Feed (Ascii 12)

\g
Display beep (Ascii 7)

\n
Line Feed, newline (Ascii 10)

\r
Carriage Return (Ascii 13)

\t
Tab (Ascii 9)

\v
Vertical tab (Ascii 11)

\)
The trailing bracket which is possibly needed as part of a (..)
sequence, see

Source description
.

\
The backslash itself

\xHH
The character given by the ascii code HH, where HH are hex digits.

\OOO
The character given by the ascii code OOO, where OOO are octal
digits. Finally a single backslash at the end of the line causes

concatening the following line. This makes it possible to use strings
of any length, FlexCat makes no assumptions on string length.

A string is hence given by a description line and the following string
line. Let’s see an example:

msgHello (/4/)
Hello, this is english!\n

Docs/FlexCat_english 12 / 30

The ID is missing here, so FlexCat chooses a suitable number. The number 4
instructs FlexCat, that the following string must not have less than four
characters and it may be of any length. See the file FlexCat.cd for a
further example.

1.8 FlexCat_english.guide/Catalog translation

Catalog translation files

Catalog translation files are very similar to catalog descriptions,
except for other commands and having no informations on string ID and
length. (These are taken from the catalog description.) Any string from the
catalog description must be present (However, FlexCat omits writing strings
into the catalog which are identical to the default string.) and no
additional identifiers may occur. This is easy assured by using FlexCat to
create new catalog translation files. See

Survey
.

The commands allowed in catalog translations are:
##version <str>

Gives the catalog version as AmigaDOS version string. Example:
##version $VER: FlexCat.catalog 8.3 (06.03.98)

The version number of this catalog is 8. Hence the catalog descriptions
version number must be 0 or 8.

You may replace the date string 27.09.93 with special keyword $TODAY.
While creating catalog, $TODAY will be replaced by current date (note,
only 1st occurance of $TODAY in $VER string will be processed). If
you want your version strings to always be recent type i.e.:

$VER: FlexCat.catalog 3.2 (06.03.98)TODAY)

##rcsid $Date: 1998/03/06 22:22:15 $ $Revision: 2.0 $ $Id: FlexCat_english.texinfo ←↩
,v 2.0 1998/03/06 22:22:15 carlos Exp carlos $
can be used in conjunction with a revision control system instead of
##version. <date> is the date in the form yy/mm/dd, time is the time
(ignored), <rev> the revision and <name> the name to be used in the
version string.

##name <name>
is present for CatComp compatibility only. It replaces the <name>
argument in the ##rcsid command.

##language <str>
The catalogs language. Of course this should be another language than
the catalog descriptions language. The ##language and ##version
commands must be present in a catalog translation.

##codeset <num>
Currently not used, must be 0. This is the default value.

chunk <ID> <string>

Docs/FlexCat_english 13 / 30

Adds a chunk ID to the catalog which consists if the given <string>.
Usually one uses this to add comments to the catalog.

chunk AUTH German catalog translation by Jochen Wiedmann

The string from above looks like this in the catalog translation:
msgHello
Hallo, dies ist deutsch!\n

See Deutsch.ct as further example of a catalog translation.

1.9 FlexCat_english.guide/Source description

Source description files

This is the special part of FlexCat. Until now there is nothing that
CatComp, KitCat and others don’t offer too. The created source should make
it easy, to use the catalogs without losing flexibility. Any programming
language should be possible and any requirements should be satisfyable.
This seems like a contradiction, but FlexCat’s solution are the source
description files containing a template of the source to be created. These
are editable as the catalog description and translation files are, hence
FlexCat can create any code.

The source descriptions are searched for certain symbols which are
replaced by certain values. Possible symbols are the backslash characters
from above and additionally sequences beginning with a %. (This is well
known for C programmers.)
%b

is the base name of the catalog description. See
Program start
.

%v
is the version number of the catalog description. Don’t mix this up
with the catalog version string from the catalog translation.

%l
is the catalog descriptions language. Please note, that this is
inserted as a string. See %s below. below.

%n
is the number of strings in the catalog description.

%%
is the character % itself.

But the most important thing are the following seqences. These represent
the catalog strings in different ways. Lines containing one or more of these
symbols are repeated for any String.

%i
is the identifier from the catalog description.

Docs/FlexCat_english 14 / 30

%nd
%nx
%nc

is the strings ID in decimal, hexadecimal or octal characters,
respectively. The number n tells FlexCat, how many characters the ID
should use (the string will be filled with Zeros at the left). You may
omit n: In this case the ID will take just the number of characters it
needs.

%e
is the number of this string. Counting begins with 0.

%s
is the string itself; this will be inserted in a way depending on the
programming language and can be controlled using the commands
##stringtype and ##shortstrings.

%na
is the string’s ID. The difference between %na and e.g. %nx is that
the %na produces string’s ID parted to single bytes:

%2a in source descriptor will produce \x00\0x20
You may omit n. In this case the ID will take 4 bytes.

%nt
is the string’s len. Please note, that the result value is always even.

%z
this item should be used together with %nt. Because %nt always returns
even value having desriptor line like:

static const char Block[] =
{

"%2a" "%2t" %s "%z"
};

may lead to problems, especially while parsing such table, because %2t
might be even while real string’s %s lenght may be odd! So while
parsing you read or skip one byte too much (I guess consequences are
known). To avoid such problems %z was introduced. FlexCat replaces it
with as many bytes (\x00) as many string’s lenght lacks to even. So if
string is 3 bytes long %nt returns 4 and %z adds one \x00

%(...)
inserts the text between the brackets for any string except the last.
This is probably needed in Arrays, if the array entries should be
separated by commas, but the last entry must not be followed by a
comma. You can use %(,) in that case. Note that within the brackets
there is no replacing of % sequences. Backslash sequences, however,
are still allowed.

The control sequences %l and %s create strings. But how strings look
depends on the program language. That’s why the source description allows
command lines similar to the catalog translation. These must begin with the
first character of the line and any command must have its own line.
Possible commands are:
##shortstrings

makes longer strings to be splitted on different lines. This is
probably not always possible or not implemented into FlexCat and hence

Docs/FlexCat_english 15 / 30

the default is to create one, probably very long string.

##stringtype <type>
Tells FlexCat how strings should look like. Possible types are
None

No additional characters are created. An image of the string is
inserted and nothing else. No output of binary characters (the
backslash sequences) is possible.

C
creates strings according to C. The strings are preceded and
followed by the character ". Strings are splitted using the
sequences "\ at the end of the line and " at the beginning of the
new line. (The backslash is needed in macros.) Binary characters
are inserted using \OOO. See

C
.

Oberon
is like string type C, except for the trailing backslash at the
end of the line. See

Oberon
. This string type is recommended for

Modula-2, too.

Assembler
Strings are created using dc.b. Readable ascii characters are
preceded and followed by the character ’, binary characters are
inserted as $XX. See

Assembler
.

E
Strings are preceded and followed by the character ’. A +
concatenates strings which are spread on different lines. Binary
characters are inserted like in C.

Let’s look at an excerpt from the file C_h.sd creating an include file
for the programming language C.

##stringtype C
##shortstrings

#ifndef %b_CAT_H /* Assure that this is read only once. */
#define %b_CAT_H

/* Get other include files */
#include <exec/types.h>
#include <libraries/locale.h>

/* Prototypes */
extern void Open%bCatalog(struct Locale *, STRPTR);
extern void Close%bCatalog(void);
extern STRPTR Get%bString(LONG);

/* Definitions of the identifiers and their ID’s */

Docs/FlexCat_english 16 / 30

/* This line will be repeated for any string. */
#define %i %d

#endif

For the search path that is used for source descriptions see See

Program start
.

1.10 FlexCat_english.guide/Using FlexCat source

Including FlexCat source in own programs

**

Of course this depends on what source is created and hence on the source
description. What we are talking here about are the source description
files distributed with FlexCat. See

Source description
.

All source descriptions should allow using the program without
locale.library. However, a global variable called LocaleBase (_LocaleBase
for assembler) must be present and initialized with NULL or by a call to
‘Exec/OpenLibrary’. No localizing is possible in the former case except
when using the source description C_c_V20.sd. This allows localizing on
2.0 by repacing the locale.library with the iffparse.library. (A variable
IFFParseBase has to be present for this and initialized like LocaleBase.)
See

C
. The programmer does not need knowledge of these libraries ←↩

except
when creating own source descriptions.

There are three functions and calling them is rather simple.

- : OpenCatalog (locale, language)
This function possibly opens a catalog. The argument locale is a
pointer to a Locale structure amd language is a string containing the
name of the language that should be opened. In most cases these should
both be NULL or NIL, respectively, because the user’s defaults are
overwritten otherwise. See ‘Locale.OpenCatalog’ for details.

Non object oriented languages (C, Assembler, Modula) usually call these
function OpenXXXCatalog, where XXX is the base name of the application:
This allows to use different catalogs in the same program.

If the user has Deutsch and Français as default languages and the
programs base name is XXX this looks for the following files:

PROGDIR:Catalogs/Deutsch/XXX.catalog
LOCALE:Catalogs/Deutsch/XXX.catalog
PROGDIR:Catalogs/Français/XXX.catalog
LOCALE:Catalogs/Français/XXX.catalog

Docs/FlexCat_english 17 / 30

where PROGDIR: is the programs current directory. (The order of
PROGDIR: and LOCALE: can get changed in order to suppress a requester
like Insert volume YYY.

OpenCatalog is of type void (a procedure for Pascal programmers) and
hence gives no result.

- : GetString (ID)
Gives a pointer to the string with the given ID from the catalog
description. Of course these strings are owned by locale.library and
must not be modified.

An example might be useful. Take the string from the catalog
description example, which was called msgHello. The source descriptions
declare a constant msgHello representing the ID. This could be printed
in C using

printf("%s\n", GetString(msgHello));

- : CloseCatalog (void)
This function frees the catalog (that is the allocated RAM) before
terminating the program. You can call this function at any time even
before OpenCatalog is called.

C
FlexCat source in C programs

C++
FlexCat source in C++ programs

Oberon
FlexCat source in Oberon programs

Modula-2
FlexCat source in Modula-2 programs

Assembler
FlexCat source in Assembler programs

E
FlexCat source in E programs

Appendix
Multiple catalogs support

1.11 FlexCat_english.guide/C

FlexCat source in C programs
============================

C source consists of two parts: A .c file which should be compiled and

Docs/FlexCat_english 18 / 30

linked without further notice and an include file which should be included
from any source part using catalog strings and which defines the ID’s as
macros.

The C compilers I know (SAS/C, Dice and gcc) allow automatic opening of
libraries and initialization of the catalogs: Thus you need not call the
functions OpenCatalog and CloseCatalog, your compiler does this for you.
Similarly it calls the GetString functions for all catalog strings from
within Opencatalog. This allows to simply write msgHello instead of
GetString(msgHello).

If you define a preprocessor symbol LOCALIZE_V20 to the compiler (option
-D LOCALIZE_V20 with gcc and Dice, DEF LOCALIZE_V20 with SAS/C), you get a
program which can use catalogs under OS 2.0: The locale.library is replaced
by the iffparse.library in that case. Your program needs an option like
LANGUAGE Deutsch in that case: I function InitXXXCatalog (XXX being the
base name of the application) should be called, if this option is present,
which receives the language name as argument. This option is ignored, of
course, if you have the locale.library. (It would be possible to do
similar things under OS 1.3, but I don’t want to support this obsolete
version anymore.)

You loose a little bit functionality with this source description: For
example, you cannot supply a Locale structure to OpenCatalog. However, 95%
of all applications won’t miss anything, others need to modify the source
description.

For an example of a program using these source descriptions see
Survey
.

NOTE:

Since v1.9, distribution archive contains CatComp_h.sd source
descriptor, which can be used with programs utilizing more than one catalog
at the same time. Look inside to see how to update other source descriptors.

There’re also another new source descriptor by Magnus Holmgren
<lear@algonet.se>. The files Cat2h_c.sd and Cat2h_h.sd contains source
descriptors that generates code similar to the one generated by Cat2h by
Nico François (and also Cat2Inc by Magnus Holmgren ;). It uses a somewhat
different approach to string handling, that is small and fast.

Rather than storing all string in an array, and scan that one each time
(like CatComp normally does; there are ways around that though), the first
two bytes of a string contains the ID. The "GetString" function, which
takes a string as argument, then only reads these two bytes into a long
word, and the string ID and default string is then known.

As of version 1.9, FlexCat is capable of generating that kind of output,
using the %a command. The included files actually use %2a, and thus, only
two ID bytes per string are generated (like Cat2h does). This should be
enough for most applications. If you change the length, remember that the
GetString() function need to be changed accordingly.

The generated header file defines all strings, and the source file
contains code to open/close the catalog (with autoinit code for SAS/C and

Docs/FlexCat_english 19 / 30

DICE), and a suitable GetString function. A quick look at the generated
code should be enough to gather all the details, I think.

The code does currently not support multiple catalogs, nor change of
version number and builtin language. Easy to add though (e.g. by using %b
for all names (and references) needed to be unique e.g. Get%bString()
etc), should the need arise.

1.12 FlexCat_english.guide/C++

FlexCat source in C++ programs
==============================

Using FlexCat source in C++ programs is extremely comfortable: Almost
everything is done by a special class implemented in the files
C++_CatalogF.cc and C++_CatalogF.h. All you have to do is to rename these
files into CatalogF.cc and CatalogF.h, compile them and create and compile
two additional files using the source descriptions C++_cc.sd and C++_h.sd.
The former will create a file with the strings (which must be compiled too,
of course) and the latter will be included into your own program. A C++
program which uses FlexCat source will look like this:

#include <iostream.h>
extern "C"
{
#include <clib/exec_protos.h>
}
#include "CatalogF.h"
#include "HelloLocalWorld_Cat.h"

struct LocaleBase *LocaleBase = 0;

int main()
{ // You must open the library here, even if your compiler supports

// Auto-Opening: This will usually break if the locale.library
// is not present. This is not what we want here as we just use
// the builtin strings in that case.
LocaleBase = (struct LocaleBase *) OpenLibrary("locale.library", 38);

const CatalogF cat(0, 0, HelloLocalWorld_ARGS);

cout >> cat.GetString(msgHelloLocalWorld);

if (LocaleBase)
CloseLibrary(LocaleBase);

}
A modification of gcc’s libauto.a is available which will even allow to

remove the lines concerning the variable LocaleBase.

1.13 FlexCat_english.guide/Oberon

Docs/FlexCat_english 20 / 30

FlexCat source in Oberon programs
=================================

There are different source descriptions: AmigaOberon.sd is designed for
the current version of the AmigaOberon compiler, Oberon_V39.sd is for older
versions and Oberon_V38.sd uses the Locale.mod from Hartmut Goebel.
Oberon-A.sd is, of course for Oberon-A.

The function prototypes are
XXX.OpenCatalog(loc: Locale.LocalePtr; language : ARRAY OF CHAR);
XXX.GetString(num: LONGINT): Exec.StrPtr;
XXX.CloseCatalog();

where XXX is the basename from the source description. See

Source description
.

Finally an example using FlexCat source:
MODULE HelloLocalWorld;

IMPORT x:=HelloLocalWorld_Cat; Dos;

BEGIN
x.OpenCatalog(NIL, "");

Dos.PrintF("%s\n", x.GetString(x.msgHello));

(* Catalog will be closed automatically *)
(* when program exits. *)

END Anything;

1.14 FlexCat_english.guide/Modula-2

Flexcat source in Modula-2 programs
===================================

Modula-2 supports a module concept similar to Oberon. This means that
the function names are always the same. Unlike Oberon, however, Modula-2
needs an implementation and a definition module, that’s why you have to
create two files using the source descriptions Modula2Def.sd and
Modula2Mod.sd. These are adapted for the M2Amiga compiler. Note, that you
need the file OptLocaleL.def from version 4.3 of the M2Amiga compiler, too.

The function prototypes are:
PROCEDURE OpenCatalog(loc : ld.LocalePtr;

language : ARRAY OF CHAR);
PROCEDURE CloseCatalog();
PROCEDURE GetString(num : LONGINT) : ld.StrPtr;

where XXX is the base name from the source description. See

Docs/FlexCat_english 21 / 30

Source description
.

Finally an example of a program using FlexCat source:
MODULE HelloLocalWorld;

IMPORT hl: HelloLocalWorldLocale,
io: InOut;

BEGIN
hl.OpenCatalog(NIL, "");

io.WriteString(hl.GetString(hl.msgHello)); io.WriteLn;

hl.CloseCatalog;
END HelloLocalWorld.

1.15 FlexCat_english.guide/Assembler

FlexCat source in Assembler programs
====================================

Assembler source is created for usage with the Aztec Assembler. This
should not be very different to other assemblers and you should be able to
implement own source descriptions. The source consists of two parts: A .asm
file which should be assembled and linked without further notice and an .i
include file which defines the string ID’s and must be included by the
using program.

The FlexCat-function names are slightly modified to allow the usage of
different catalogs in one file: These are OpenXXXCatalog, CloseXXXCatalog
and GetXXXString, where XXX is the base name from the source description.
The concept is copied from the GadToolsBox and prooved good, as I think.
See

Source description
.

As usual the function result is given in d0 and the functions save
registers d2-d7 and a2-a7. OpenCatalog expects its arguments in a0 (pointer
to Locale structure) and a1 (Pointer to language string) which should be
NULL in most cases. GetString expects a pointer in a0. You should not care
about what it points to.

Finally an example of a program using FLexCat source:

* HelloLocalWorld.asm
include "XXX.i" ; Opening this is a must. This

; contains "xref OpenHelloLocalWorldCatalog", ...

xref _LVOOpenLibrary
xref _LVOCloseLibrary
xref _AbsExecBase

dseg

Docs/FlexCat_english 22 / 30

LocNam: dc.b "locale.library",0
dc.l _LocaleBase,4 ; Must be present under this name

cseg

main: move.l #38,d0 ; Open locale.library
lea LocName,a1
move.l _AbsExecBase.a6
jsr _LVOOpenLibrary(a6)

* NO exit, if OpenLibrary fails

sub.l a0,a0 ; Open catalog
sub.l a1,a1
jsr OpenHelloLocalWorldCatalog

lea.l msgHello,a0 ; Get pointer to string
jsr GetHelloLocalWorldString
jsr PrintD0 ; and print it

Ende:
jsr CloseHelloLocalWorldCatalog ; Close Catalog
move.l _LocaleBase,a1 ; Close locale.library
move.l a1,d0 ; this test is a must for 1.3
beq Ende1
jsr CloseLibrary

Ende1:
rts
end

1.16 FlexCat_english.guide/E

FlexCat source in E programs
============================

Since version 3.0 E allows to split a programs in separate modules. The
following describes the usage of E30b.sd which works with E3.0b or later.
(Version 3.0a had significant bugs, previous versions might use E21b.sd
which needs inserting the created source into the own source manually.)

E30b.sd creates a module called Locale which contains a variable cat of
type catalog_XXX, where XXX is the basename from the source description.
See

Source description
. A file HelloLocalWorld.e might look like this:

MODULE ’*Locale’
-> Use this module

DEF cat : PTR TO catalog_HelloLocalWorld
-> This variable contains all the catalog strings and some
-> methods. You must declare it in any module using
-> Localization, but initialize it in the main module only.

PROC main()

Docs/FlexCat_english 23 / 30

localebase := OpenLibrary(’locale.library’, 0)
-> Open locale.library; No exit, if it cannot
-> be opened: We use the builtin strings in that case.

NEW cat.create()
cat.open()

-> As already mentioned, this is needed in the main
-> module only.

WriteF(’\s\n’, cat.msg_Hello_world.getstr())
-> cat.msg_Hello_world one of the strings contained in
-> cat. This string declares a method getstr() which
-> reads the catalog and returns a pointer to the
-> localized string.

cat.close()
IF localebase THEN CloseLibrary(localebase)

ENDPROC

1.17 FlexCat_english.guide/Appendix

Multiple catalogs support
=========================

Most of currently available source descriptors cannot be used for
programs opening more than one catalog. In later releases it will surely
change, and corrected source desriptors will be part of the release.

For now I supply the example of such source descriptor file. Read
CatComp_h.sd to see how should the descriptor be defined to avoid multiple
symols etc. In few words: use %b as prefix, suffix or other part of any
name that is the vital part of source. If you table of strings is named
STRING replace this by %b_STRINGS and you won’t get dublicated lables any
longer.

CatComp_h.sd produces source file similar to CatComp’s used to generate,
and can be used by those people who wish to use FlexCat but don’t want to
significantly change all of own programs.

1.18 FlexCat_english.guide/Future

Further development of FlexCat

However FlexCat seems to be almost finished, I got few items on my TODO
list yet. And of course I’m open for suggestions, tips or critics.
Especially I offer to include new string types because this is possible
with very minor changes.

Docs/FlexCat_english 24 / 30

I would be pleased, if someone would send me new source descriptions and
I could introduce them into further distributions. Any programming language,
any extensions, provided that they are prooved good by testing the source in
a real existing program. See See

Support
, for contact addresses.

1.19 FlexCat_english.guide/Support

FlexCat support sites

For software updates visit FlexCat’s home page at:
http://amiga.com.pl/flexcat/

If you got any suggestion, bug report please e-mail me at:

carlos@amiga.com.pl

or via snail mail:

Marcin Orlowski
ul. Radomska 38
71-002 Szczecin
Poland

1.20 FlexCat_english.guide/Credits

Credits

Jochen Wiedmann’s thanks go to:

Albert Weinert
for KitCat, the predecessor of FlexCat which has done me valuable
things, but finally wasn’t flexible enough, and for the Oberon source
descriptions.

Reinhard Spisser und Sebastiano Vigna
for the Amiga version of texinfo. This documentation is written using
it.

The Free Software Foundation
for the original version of texinfo and many other excellent software.

Matt Dillon
for DICE and especially for DME.

Docs/FlexCat_english 25 / 30

Alessandro Galassi
for the italian catalog.

Lionel Vintenat
for the E source description and its documentation, the french catalogs
and bug reports.

Antonio Joaquín Gomez Gonzalez (u0868551@oboe.etsiig.uniovi.es) for
the C++ source descripton, the spanish translation of the manual, the
spanish catalog and the very good hint on speeding up the GetString
function.

Olaf Peters (op@hb2.maus.de) for the Modula-2 source description
Russ Steffen (steffen@uwstout.edu)

for the suggestion of the FLEXCAT_SDDIR variable.

Lauri Aalto (kilroy@tolsun.oulu.fi)
for the finnish catalogs.

Marcin Orlowski (carlos@amiga.com.pl)
for the polish catalogs and for maintaining the polish locale package.

Udo Schuermann (walrus@wam.umd.edu)
for suggesting the WARNCTGAPS option and the ##chunk command.

Christian Hoj (cbh@vision.auc.dk)
für die dänische Quelltextbeschreibung

The people of #AmigaGer
for answering many stupid questions and lots of fun, for example
stefanb (Stefan Becker), PowerStat (Kai Hoffmann), \ ill (Markus
Illenseer), Quarvon (Jürgen Lang), ZZA (Bernhard Möllemann), Tron
(Mathias Scheler), mungo (Ignatios Souvlatzis), \ jow (Jürgen
Weinelt) und Stargazer (Petra Zeidler).

Commodore
for the Amiga and Kickstart 2.0. Keep on developing it and I’ll be an
Amiga-user for the next 8 years too. ;-)

Marcin’s thanks go to:

Jochen Wiedmann for creating FlexCat
Magnus Holmgren <lear@algonet.se> for additional source descriptor Cat2h
Members of Amiga Translators’ Organization <http://ato.vapor.com/ato/>

for creating additional translations and updating existing ones:

Serbian catalog file by Ljubomir Jankovic <lurch@afrodita.rcub.bg.ac.yu>
Czech translation by Vit Sindlar <xsindl00@stud.fee.vutbr.cz>
Svedish translation by Magnus Holmgren <lear@algonet.se> and Hjalmar Wikholm < ←↩

hjalle@canit.se>
Finnish translation updated by Mika Lundell <c71829@uwasa.fi>
Italian translation reworked by Luca Nora <ln546991@silab.dsi.unimi.it> and ←↩

Giovanni Addabbo <gaddabbo@imar.net>

Slovenian translation by Damir Arh <damir.arh

Docs/FlexCat_english 26 / 30

Dutch translation updated by Leon Woestenberg <leon
Christian Hattemer <chris for StormC source descriptors and updating german ←↩

catalog
Sven Steiniger <ss37 for the new source descriptor for E programmers (E32e.sd)

1.21 FlexCat_english.guide/History

History of development

The history of FlexCat development is logged in the file FlexCat.history,
which is integral part of the distribution archive.

1.22 FlexCat_english.guide/Index

Index

.cd
Catalog description

.ct
Catalog translation

.sd
Source description

Adress
Disclaimer

AmigaOberon
Oberon

Ascii-Code
Catalog description

Assembler
Assembler

Author
Disclaimer

AutoC_c.sd
C

AutoC_h.sd
C

AztecAs_asm.sd

Docs/FlexCat_english 27 / 30

Assembler

AztecAs_i.sd
Assembler

C
C

C++
C++

C++_CatalogF.cc
C++

C++_CatalogF.h
C++

C++_cc.sd
C++

C++_h.sd
C++

Cat2h_c.sd
C

Cat2h_h.sd
C

CATALOG
Program start

Catalog description
Catalog description

Catalog translation
Catalog translation

CatComp_h.sd
C

CDFILE
Program start

Changes
History

CLI
Program start

Contributions
Future

Control characters
Catalog description

COPYMSGNEW

Docs/FlexCat_english 28 / 30

Program start

Copyright
Disclaimer

Credits
Credits

CTFILE
Program start

C_c_V20.sd
C

C_c_V21.sd
C

C_h.sd
C

Deutsch.ct
Catalog translation

Distribution
Disclaimer

E
E

E21b.sd
E

E30b.sd
E

FILL
Program start

FlexCat
Future

FlexCat source
Using FlexCat source

FlexCat.cd
Catalog description

flexcat.prefs
Preferences

FLUSH
Program start

Future
Future

History

Docs/FlexCat_english 29 / 30

History

Installation
Installation

Internet
Disclaimer

Mail
Disclaimer

MODIFIED
Program start

Modula-2
Modula-2

Modula2Def.sd
Modula-2

Modula2Mod.sd
Modula-2

NEWCTFILE
Program start

NEW_MSG
Preferences

NOBEEP
Program start

NOBUFFEREDIO
Program start

NOLANGTOLOWER
Program start

NOOPTIM
Program start

Oberon
Oberon

Oberon-A
Oberon

Oberon_V38.sd
Oberon

Oberon_V39.sd
Oberon

OLDNEWMSG
Program start

Permissions

Docs/FlexCat_english 30 / 30

Disclaimer

Preferences
Preferences

Prohibitions
Disclaimer

QUIET
Program start

Requirements
Installation

Shell
Program start

Source description
Source description

SOURCES
Program start

Support
Support

Survey
Survey

Using FlexCat source
Using FlexCat source

WARNCTGAPS
Program start

Workbench
Program start

	Docs/FlexCat_english
	Docs/FlexCat_english.guide
	FlexCat_english.guide/Disclaimer
	FlexCat_english.guide/Survey
	FlexCat_english.guide/Installation
	FlexCat_english.guide/Program start
	FlexCat_english.guide/Preferences
	FlexCat_english.guide/Catalog description
	FlexCat_english.guide/Catalog translation
	FlexCat_english.guide/Source description
	FlexCat_english.guide/Using FlexCat source
	FlexCat_english.guide/C
	FlexCat_english.guide/C++
	FlexCat_english.guide/Oberon
	FlexCat_english.guide/Modula-2
	FlexCat_english.guide/Assembler
	FlexCat_english.guide/E
	FlexCat_english.guide/Appendix
	FlexCat_english.guide/Future
	FlexCat_english.guide/Support
	FlexCat_english.guide/Credits
	FlexCat_english.guide/History
	FlexCat_english.guide/Index

